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Abstract

The current paper investigates the fractional Navier–Stokes of the fluid model in which the dif-
ferential is of non-integer order. In addition, some basic definitions are discussed. This research
aims to find an approximate solution to non-linear Fractional Coupled Navier–Stokes Equation
(FCNSE) in two-dimension by using a hybrid technique. Thus, we propose a hybrid the Shehu
transform (S-transform) with the homotopy perturbation method to solve this model. The S-
transform with homotopy perturbation is an excellent combination in applied mathematics and
engineering that permits in converting FCNSE into algebraic equations . Then, through solving
this algebraic equation, it is possible to obtain the unknown function utilizing some modifica-
tions with the help of inverse S- transform. For demonstrating the effectiveness and capabilities
of the proposed innovation, various illustrative examples were applied.
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1 Introduction

Realistic problems related to fractional differential equations are of great significance, where
Bilal et al. [6] used the collocation method for solving fractional pantograph differential equa-
tion with fractional Taylor series. Albuohimad et al. [2] offered a numerical approach capable
of resolving the fractional coupled Korteweg-de Vries equation. Saadatmandi and Dehghan [18]
worked on generalizing the legendre matrix of operations to fractional calculus. Under the title
of fractional differential equations, Podlubny [16] studied fractional derivatives with some appli-
cations. Set et al. [20] created inequalities related to fractional integral. Since fractional differ-
ential equations play a crucial part in many applied and theoretical studies, a large number of
researchers have tackled the fractional version of various phenomena in nature and biology, such
as in [7], "A fractional integral sliding mode control scheme based on Caputo-Fabrizio derivative
and Atangana-Balino integral is developed and presented for Stanford robot for path-following
tasks". Similarly, "Treatment of childhood hearing loss caused by mumps virus and a unique so-
lution for a specific fractional system for the hearing loss model has been demonstrated" in [13].

Studies have followed where many scholars have focused on that fractional expansions of
mathematical models of the order of integers treat natural truth in a very systematic way. Baleanu
et al. [4] presented a fractional-degree epidemiological model of childhood diseases using the
new fractional derivative approach proposed by Caputo and Fabrizio. Ahmad et al. [1] studied
the existence and stability fractional differential system. Dehingia et al. [9] formulated a mathe-
maticalmodel of SARS-CoV-2 under Caputo’s fractional degree derivative. Moreover, the function
accumulates in a likely manner, especially if they are famous equations such as the Navier–Stokes
equations of the fluid [19], and this has many applications in the physical sciences, design, etc.
When these equations aremixed together and developed in various sciences, non-linear Fractional
Navier–Stokes equations in 2−dimensional are realized. Accordingly, there will be a possibility of
mathematically describing the applied issue and searching for its solution is one of the researchers
priorities. Hence, it is noticed that the non-linear Navier–Stokes equations play an essential role
in mathematical modeling with the effects of fractional derivative [3], whether they are one or
two-dimensional. The original Navier–Stokes models are

∂v

∂t
+ (v∇)v = −1

ρ
∇P + u∇2v, (1)

∇v = 0, (2)
where ρ, P , u, v, t are density, pressure, kinematics viscosity, velocity and time respectively.

In this research, equation above can be generalized by replacing the ordinary derivative by
a fractional derivative of order ℑ, 0 < ℑ ≤ 1, and develop the Navier–Stokes equations into a
coupled Navier–Stokes equations, also from (1−dimension) into (2−dimension). Therefore, an
FCNSE of the following model [8] can be obtained,

Dℑu+ u
∂u

∂ζ
+ u

∂u

∂ξ
= ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)
+ f1,

Dℑu+ u
∂u

∂ζ
+ u

∂u

∂ξ
= ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)
+ f2.

(3)

For u = u(ζ, ξ, t), v = v(ζ, ξ, t), f1 = f1(ζ, ξ, t) and f2 = f2(ζ, ξ, t), the fractional Navier–Stokes
equations have been studied byMomani andOdibat [14] byusingHomotopyPerturbationMethod
(HPM). The HPM was first introduced by He [10].

The present article starts with offering few significant definitions, some fundamental ideas
for fractional calculus and definition of some important functions. Then, an explanation of the
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structure employed in solving (3) is presented. This structure includes mixing the Shehu trans-
form [22] with Homotopy perturbation method to solve this type of non-linear fractional coupled
Navier–Stokes equations in two dimension and use some modification to get the approximate so-
lutions.

2 Fractional Calculus

In this segment, some of the special functions are introduced. Additionally, some definitions
and essential ideas of fractional calculus. Hussein and Jassim [11] obtained geometric proper-
ties by studying some classes of polymorphic functions, which are determined by the fractional
integration operator. Oldham and Spanier [15] covered the theories and applications of the frac-
tional derivatives and integrals. Also, Tarasov [21] studied applications of the fractional calculus.
Kumar and Baleanu [12] focused on the physics applications within the fractional calculus track.
They assumed a significant part in the hypothesis of fractional differentiation’s. Moreover, these
functions and basic are used in developing special formulations that are applicable to fractional
differentiation.

2.1 Gama function

The gamma function is the example par excellence for a reasonable extension of scope of a
function from integer to real up to imaginary number. The gamma function Γ(κ) is defined as,

Γ(κ) =
∫ ∞

0

tκ−1e−tdt, κ > 0.

First of all, it is easily shown that for a positive integer κ the gamma function can be represented
by,

Γ(κ) = (κ − 1)!.

Therefore,
Γ(κ + 1) = κΓ(κ).

The above equality enable us to calculate, for any positive real κ, the function Γ(κ) in terms of the
fractional part of κ.

2.2 The fractional derivative

Typically specialists give the Riemann Liouville(RL) variant of fractional integral definition.
However, we are keen on amore valuablemeaning of fractional derivatives. The usual formulation
of the fractional derivatives have been given in standard references such as Rafeiro and Samko
[17], Oldman and Spanier [15], is the Riemann-Liouville definition.
Definition 2.1. The following form,

Dℑ
a u(x) =

1

Γ(ℓ−ℑ)
dℓ

dxℓ

∫ x

a

(x− t)ℓ−ℑ−1u(t)dt, (4)

where ℓ is a positive integer number defined by (ℓ − 1 < ℑ ≤ ℓ), is called The Riemann Liouville
derivative with order ℑ > 0, [16].
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Definition 2.2. With order ℑ > 0 of the given function u(x) the following form,

Dℑ
a u(x) = Iℓ−ℑDℓ

au(x) =
1

Γ(ℓ−ℑ)

∫ x

a

(x− t)ℓ−ℑ−1 dℓ

dxℓ
u(t)dt, (5)

where (ℓ− 1 < ℑ ≤ ℓ) is called The Caputo Derivatives.

Lemma 2.1. If ℓ− 1 < ℑ ≤ ℓ, ℓ ∈ N , then,

i. DℑIℑu(x) = u(x).

ii. IℑDℑu(x) = u(x)−
∑ℓ−1

n=0

xn

n!
u(n)(0), x > 0.

Lemma 2.2. For RL fractional derivative , we have

• If u(x) is the unit function, then dℑ[1]

dxℑ =
x−ℑ

Γ(1−ℑ)
.

• If u(x) is the constant function, then dℑ(c)

dxℑ = c
x−ℑ

Γ(1−ℑ)
.

• The fractional derivative of eµt has the form,

Dℑeµt = t−ℑE1,1−ℑ(µt), n− 1 < ℑ < n, n ∈ N, µ ∈ C.

Also, for the Caputo fractional derivative, we have

• If u(x) is the unit function, then dℑ[1]

dxℑ = 0.

• If u(x) is the constant function, then dℑ(c)

dxℑ = 0.

• The fractional derivative of eµt has the form,

cD
ℑeµt =

∞∑
k=0

µk+ntk+n−ℑ

Γ(k + 1 + n−ℑ)
= µntn−ℑE1,n−ℑ+1(µt),

where E1,n−ℑ+1 is Mittag-leffler functions, n− 1 < ℑ < n, n ∈ N, µ ∈ C.

3 S-Transform

The S- is a useful tool in applied and engineering mathematics, especially fractional differ-
ential equations. In this segment, we audit a few definitions and theorems related to the S-
transformation and its inverse [5, 22].
Definition 3.1. The S-transform of a given function y(t) is defined as,

S[y(t)] = Y (s,ϖ) =

∫ ∞

0

exp

(
−st

ϖ

)
y(t)dt, (6)

where S, (s,ϖ), y(t) and exp

(
−st

ϖ

)
are operator of Suehu transform, positive integer, real function and

kernal function, respectively.
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Definition 3.2. The inverse S-transform is given by,

S
−1[Y (s,ϖ)] =

1

2πi

∫ α+i∞

α−i∞

1

ϖ
exp

(
st

ϖ

)
Y (s,ϖ)ds = y(x), x ≥ 0. (7)

Some of the useful S-transform for some functions which are applied in this paper, defined by,

S[1] =
ϖ

s
,

S[x] =
ϖ2

s2
,

S[sin(ax)] =
aϖ2

s2 + a2ϖ2
,

S[cos(ax)] =
sϖ

s2 + a2ϖ2
,

S[exp(ax)] =
ϖ

s− aϖ
,

S[xn] =
(ϖ
s

)n+1

n! =
(ϖ
s

)n+1

Γ(n+ 1).

Theorem 3.1. If S[y(x)] = Y (s,ϖ) and S[g(x)] = G(s,ϖ), the S-transform of the function (y ∗ g)(x) is
defined as,

S[(y ∗ g)(x)] = Y (s,ϖ)G(s,ϖ). (8)

Theorem 3.2. If the function y(ℑ)(x) is the derivative of y(x) with respect to x then its S-transform is
defined by,

S[Dℑy(x)] =
( s

ϖ

)ℑ
Y (s,ϖ)−

n−1∑
k=0

( s

ϖ

)ℑ−k−1

Dky(0). (9)

4 Structural of The Approximate Solution in 2−Dimensional for The
Fractional Coupled Navier–Stokes Model

We can explain this method in two dimension, by considering the fractional coupled Navier–
Stokes equation;

Dℑu+ u
∂u

∂ζ
+ u

∂u

∂ξ
= ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)
+ f1,

Dℑu+ u
∂u

∂ζ
+ u

∂u

∂ξ
= ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)
+ f2,

(10)

for n− 1 < ℑ ≤ n, n ∈ N. With initial conditions,
u(ζ, ξ, 0) = u0,

v(ζ, ξ, 0) = v0.
(11)

where, Dℑu and Dℑu are the Caputo fractional derivative of the functions u and u respectively,
f1 and f2 are source term. In the first step, we will take the S-transform to both sides to (10), as
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follows,

S
[
Dℑu

]
+ S

[
u
∂u

∂ζ
+ u

∂u

∂ξ

]
= S

[
ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)]
+ S [f1] ,

S
[
Dℑu

]
+ S

[
u
∂u

∂ζ
+ u

∂u

∂ξ

]
= S

[
ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)]
+ S [f2] ,

(12)

or

S
[
Dℑu

]
= S

[
ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)]
− S

[
u
∂u

∂ζ
+ v

∂u

∂ξ

]
+ S [f1] ,

S
[
Dℑu

]
= S

[
ρ

(
∂2v

∂ζ2
+

∂2v

∂ξ2

)]
− S

[
u
∂v

∂ζ
+ v

∂v

∂ξ

]
+ S [f2] ,

(13)

then,
( s

ϖ

)ℑ
U(s,ϖ) =

n−1∑
k=0

( s

ϖ

)ℑ−k−1

Dku(ζ, ξ, 0) + S [f1] + S

[
ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)]
− S

[
u
∂u

∂ζ
+ v

∂u

∂ξ

]
,

( s

ϖ

)ℑ
V(s,ϖ) =

n−1∑
k=0

( s

ϖ

)ℑ−k−1

Dkv(ζ, ξ, 0) + S [f2] + S

[
ρ

(
∂2v

∂ζ2
+

∂2v

∂ξ2

)]
− S

[
u
∂v

∂ζ
+ v

∂v

∂ξ

]
.

(14)

Presently we multiply two sides of (14) by
(
ϖℑ

sℑ

)
to get

U(s,ϖ) =

n−1∑
k=0

( s

ϖ

)−k−1

Dku(ζ, ξ, 0) +
(ϖ
s

)ℑ
S [f1] +

(ϖ
s

)ℑ
S

[
ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)]
−
(ϖ
s

)ℑ
S

[
u
∂u

∂ζ
+ v

∂u

∂ξ

]
,

V(s,ϖ) =

n−1∑
k=0

( s

ϖ

)−k−1

Dkv(ζ, ξ, 0) +
(ϖ
s

)ℑ
S [f2] +

(ϖ
s

)ℑ
S

[
ρ

(
∂2v

∂ζ2
+

∂2v

∂ξ2

)]
−
(ϖ
s

)ℑ
S

[
u
∂v

∂ζ
+ v

∂v

∂ξ

]
.

(15)

By initial conditions (11) and taking inverse S-transform for (15), we get

u = S
−1

[
n−1∑
k=0

( s

ϖ

)−k−1

Dku0

]
+ S

−1

[(ϖ
s

)ℑ
S [f1]

]
+ S

−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)]]

− S
−1

[(ϖ
s

)ℑ
S

[
u
∂u

∂ζ
+ v

∂u

∂ξ

] ]
,

(16)

u = S
−1

[
n−1∑
k=0

( s

ϖ

)−k−1

Dkv0

]
+ S

−1

[(ϖ
s

)ℑ
S [f2]

]
+ S

−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2v

∂ζ2
+

∂2v

∂ξ2

)]]

− S
−1

[(ϖ
s

)ℑ
S

[
u
∂v

∂ζ
+ v

∂v

∂ξ

]]
.

(17)
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Now, we apply the Homotopy perturbation method [3, 10] to (16) and (17). In the beginning, we
create the Homotopy such that,

u = u0 + p

[
S
−1

[
n−1∑
k=1

( s

ϖ

)−k−1

Dku0

]]
+ p

[
S
−1

[(ϖ
s

)ℑ
S [f1]

]]

+ p

[
S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)]]]
− p

[
S
−1

[(ϖ
s

)ℑ
S

[
u
∂u

∂ζ
+ v

∂u

∂ξ

]]]
,

(18)

u = v0 + p

[
S
−1

[
n−1∑
k=1

( s

ϖ

)−k−1

Dkv0

]]
+ p

[
S
−1

[(ϖ
s

)ℑ
S [f2]

]]

+ p

[
S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2v

∂ζ2
+

∂2v

∂ξ2

)]]]
− p

[
S
−1

[(ϖ
s

)ℑ
S

[
u
∂v

∂ζ
+ v

∂v

∂ξ

]] ]
,

(19)

where 0 ≤ p ≤ 1, p is the embedding parameter. The homotopy perturbation method involving
decomposition the solution u and v in power series of the embedding parameter p by the form,

u =

∞∑
n=0

un(ζ, ξ, t)p
n, (20)

u =

∞∑
n=0

vn(ζ, ξ, t)p
n. (21)

The non linear term can be decomposed as,(
u
∂u

∂ζ
+ v

∂u

∂ξ

)
=

∞∑
n=0

pnHn(u), (22)
(
u
∂v

∂ζ
+ v

∂v

∂ξ

)
=

∞∑
n=0

pnHn(v). (23)

Substituting (20) and (22) in (18), and (21) and (23) in (19), then we have
∞∑

n=0

un(ζ, ξ, t)p
n = u0 + p

[
S
−1

[
n−1∑
k=1

( s

ϖ

)−k−1

Dku0

]]
+ p

[
S
−1

[(ϖ
s

)ℑ
S [f1]

]]

+ p

[
S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2

∞∑
n=0

un(ζ, ξ, t)p
n +

∂2

∂ξ2

∞∑
n=0

un(ζ, ξ, t)p
n

)]]]

− p

[
S
−1

[(ϖ
s

)ℑ
S

[ ∞∑
n=0

pnHn(u)

]]]
,

(24)
∞∑

n=0

vn(ζ, ξ, t)p
n = v0 + p

[
S
−1

[
n−1∑
k=1

( s

ϖ

)−k−1

Dkv0

]]
+ p

[
S
−1

[(ϖ
s

)ℑ
S [f2]

]]

+ p

[
S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2

∞∑
n=0

vn(ζ, ξ, t)p
n +

∂2

∂ξ2

∞∑
n=0

vn(ζ, ξ, t)p
n

)]]]

− p

[
S
−1

[(ϖ
s

)ℑ
S

[ ∞∑
n=0

pnHn(v)

]]]
.

(25)
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When p = 1 and equating the coefficient of power series of p , we get two collections of equations,
p0 : u0(ζ, ξ, t) = u0,

p1 : u1(ζ, ξ, t) = S
−1

[
n−1∑
k=1

( s

ϖ

)−k−1

Dku0

]
+ S

−1

[(ϖ
s

)ℑ
S [f1]

]

+ S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
u0(ζ, ξ, t) +

∂2

∂ξ2
u0(ζ, ξ, t)

)]]

− S
−1

[(ϖ
s

)ℑ
S [H0(u)]

]
,

p2 : u2(ζ, ξ, t) = S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
u1(ζ, ξ, t) +

∂2

∂ξ2
u1(ζ, ξ, t)

)]]
− S

−1

[(ϖ
s

)ℑ
S [H1(u)]

]
,

p3 : u3(ζ, ξ, t) = S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
u2(ζ, ξ, t) +

∂2

∂ξ2
u2(ζ, ξ, t)

)]]
− S

−1

[(ϖ
s

)ℑ
S [H2(u)]

]
,

...
Also,
p0 : v0(ζ, ξ, t) = v0,

p1 : v1(ζ, ξ, t) = S
−1

[
n−1∑
k=1

( s

ϖ

)−k−1

Dkv0

]
+ S

−1

[(ϖ
s

)ℑ
S [f2]

]

+ S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
v0(ζ, ξ, t) +

∂2

∂ξ2
v0(ζ, ξ, t)

)]]

− S
−1

[(ϖ
s

)ℑ
S [H0(v)]

]
,

p2 : v2(ζ, ξ, t) = S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
v1(ζ, ξ, t) +

∂2

∂ξ2
v1(ζ, ξ, t)

)]]
− S

−1

[(ϖ
s

)ℑ
S [H1(v)]

]
,

p3 : v3(ζ, ξ, t) = S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
v2(ζ, ξ, t) +

∂2

∂ξ2
v2(ζ, ξ, t)

)]]
− S

−1

[(ϖ
s

)ℑ
S [H2(v)]

]
,

...
At last, we find the numerical approximate solution u and u by two series expansion,

u =

∞∑
n=0

un(ζ, ξ, t) = u0(ζ, ξ, t) + u1(ζ, ξ, t) + u2(ζ, ξ, t) + . . . , (26)

u =

∞∑
n=0

vn(ζ, ξ, t) = v0(ζ, ξ, t) + v1(ζ, ξ, t) + v2(ζ, ξ, t) + . . . . (27)

5 Illustrative Examples

This segment is applied the strategy introduced in the paper and give solution of some frac-
tional coupled Navier–Stokes model of 2−dimensional.
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Example 5.1. Consider the fractional coupled Navier–Stokes equation of 2−Dimensional,

Dℑu+ u
∂u

∂ζ
+ v

∂u

∂ξ
= ρ

(
∂2u

∂ζ2
+

∂2u

∂ξ2

)
+ f1,

Dℑv + u
∂v

∂ζ
+ v

∂v

∂ξ
= ρ

(
∂2v

∂ζ2
+

∂2v

∂ξ2

)
+ f2,

(28)

with initial conditions,

u(ζ, ξ, 0) = − sin(ζ + ξ),

v(ζ, ξ, 0) = sin(ζ + ξ).
(29)

When ℑ = 1 and (f1 = f2 = 0), (28) has the exact solution,

u = − exp(−2ρt) sin(ζ + ξ),

u = exp(−2ρt) sin(ζ + ξ).

Solution: Using an approximation method that includes a combination of S-transform and ho-
motopy perturbation method, and explained in Section 4. We obtain the following models,
∞∑

n=0

unp
n = − sin(ζ + ξ) + p

[
S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2

∞∑
n=0

un(ζ, ξ, t)p
n +

∂2

∂ξ2

∞∑
n=0

un(ζ, ξ, t)p
n

)]]]

− p

[
S
−1

[(ϖ
s

)ℑ
S

[ ∞∑
n=0

pnHn(u)

]]]
,

(30)
∞∑

n=0

vnp
n = sin(ζ + ξ) + p

[
S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2

∞∑
n=0

vn(ζ, ξ, t)p
n +

∂2

∂ξ2

∞∑
n=0

vn(ζ, ξ, t)p
n

)]]]

− p

[
S
−1

[(ϖ
s

)ℑ
S

[ ∞∑
n=0

pnHn(v)

]]]
.

(31)

p0 : u0(ζ, ξ, t) = u0 = − sin(ζ + ξ),

p0 : v0(ζ, ξ, t) = v0 = sin(ζ + ξ),

p1 : u1(ζ, ξ, t) = S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
u0(ζ, ξ, t) +

∂2

∂ξ2
u0(ζ, ξ, t)

)]]
− S

−1

[(ϖ
s

)ℑ
S [H0(u)]

]

= S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
u0(ζ, ξ, t) +

∂2

∂ξ2
u0(ζ, ξ, t)

)]]

− S
−1

[(ϖ
s

)ℑ
S

[
u0

∂

∂ζ
(u0) + v0

∂

∂ξ
(u0)

]]
= 2 sin(ζ + ξ)

ρtℑ

Γ(ℑ+ 1)
,

501



B. Albuohimad et al. Malaysian J. Math. Sci. 19(2): 493–507(2025) 493 - 507

p1 : v1(ζ, ξ, t) = S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
v0(ζ, ξ, t) +

∂2

∂ξ2
v0(ζ, ξ, t)

)]]
− S

−1

[(ϖ
s

)ℑ
S [H0(v)]

]

= S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
v0(ζ, ξ, t) +

∂2

∂ξ2
v0(ζ, ξ, t)

)]]

− S
−1

[(ϖ
s

)ℑ
S

[
u0

∂

∂ζ
(v0) + v0

∂

∂ξ
(v0)

]]
= −2 sin(ζ + ξ)

ρtℑ

Γ(ℑ+ 1)
,

p2 : u2(ζ, ξ, t) = S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
u1(ζ, ξ, t) +

∂2

∂ξ2
u1(ζ, ξ, t)

)]]
− S

−1

[(ϖ
s

)ℑ
S [H1(u)]

]

= S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
u1(ζ, ξ, t) +

∂2

∂ξ2
u1(ζ, ξ, t)

)]]

− S
−1

[(ϖ
s

)ℑ
S

[
u1

∂

∂ζ
(u0) + u0

∂

∂ξ
(u1) + v1

∂

∂ζ
(u0) + v0

∂

∂ξ
(u1)

] ]

= −4 sin(ζ + ξ)
ρ2t2ℑ

Γ(2ℑ+ 1)
,

p2 : v2(ζ, ξ, t) = S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
v1(ζ, ξ, t) +

∂2

∂ξ2
v1(ζ, ξ, t)

)]]
− S

−1

[(ϖ
s

)ℑ
S [H1(v)]

]

= S
−1

[(ϖ
s

)ℑ
S

[
ρ

(
∂2

∂ζ2
v1(ζ, ξ, t) +

∂2

∂ξ2
v1(ζ, ξ, t)

)]]

− S
−1

[(ϖ
s

)ℑ
S

[
u1

∂

∂ζ
(v0) + u0

∂

∂ξ
(v1) + v1

∂

∂ζ
(v0) + v0

∂

∂ξ
(v1)

] ]

= 4 sin(ζ + ξ)
ρ2t2ℑ

Γ(2ℑ+ 1)
,

...

Therefore the solution of (28) given by (26) and (27) as,

u = u0(ζ, ξ, t) + u1(ζ, ξ, t) + u2(ζ, ξ, t) + · · ·

= − sin(ζ + ξ) + 2 sin(ζ + ξ)
ρtℑ

Γ(ℑ+ 1)
− 4 sin(ζ + ξ)

ρ2t2ℑ

Γ(2ℑ+ 1)
+ · · ·

= sin(ζ + ξ)

[
−1 +

∞∑
n=1

(−1)n+1 (2ρ)ntnℑ

Γ(nℑ+ 1)

]
.

(32)

u = v0(ζ, ξ, t) + v1(ζ, ξ, t) + v2(ζ, ξ, t) + · · ·

= sin(ζ + ξ)− 2 sin(ζ + ξ)
ρtℑ

Γ(ℑ+ 1)
+ 4 sin(ζ + ξ)

ρ2t2ℑ

Γ(2ℑ+ 1)
+ · · ·

= sin(ζ + ξ)

[
1 +

∞∑
n=1

(−1)n
(2ρ)ntnℑ

Γ(nℑ+ 1)

]
.

(33)
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The numerical results of u and v at ℑ = 1, are reported and compared between approximate
solution and exact solution in Table 1, where show close contact with each other. In Table 2, for
value of ℑ = 0.8, we show compared the numerical results between iterative method [8] and the
approximate solution.

Table 1: The numerical result for exact and approximate solution to the Example 5.1
(ζ = 0.001, ξ = 0.02, ρ = 1,ℑ = 1).

t
Exact solution Approximate solution
u v u v

0.0 −0.021 0.021 −0.021 0.021

0.1 −0.017 0.017 −0.017 0.017

0.2 −0.014 0.014 −0.014 0.014

0.3 −0.012 0.012 −0.012 0.012

0.4 −0.009 0.009 −0.009 0.009

0.5 −0.008 0.008 −0.008 0.008

0.6 −0.006 0.006 −0.006 0.006

0.7 −0.005 0.005 −0.005 0.005

0.8 −0.004 0.004 −0.004 0.004

0.9 −0.003 0.003 −0.003 0.003

Table 2: The numerical result for iterative method and approximate solution to the Example 5.1
(ζ = 0.03, ξ = 0.1, ρ = 1,ℑ = 0.8).

t
Iterative method [8] Approximate solution

u v u v

0.0 −0.130 0.130 −0.130 0.130

0.1 −0.105 0.093 −0.105 0.093

0.2 −0.086 0.074 −0.086 0.074

0.3 −0.071 0.061 −0.071 0.061

0.4 −0.059 0.052 −0.059 0.052

0.5 −0.050 0.044 −0.050 0.044

0.6 −0.043 0.039 −0.043 0.039

0.7 −0.037 0.034 −0.037 0.034

0.8 −0.032 0.030 −0.032 0.030

0.9 −0.028 0.027 −0.028 0.027

Example 5.2. By referring to the fractional coupled Navier–Stokes for two-dimensional (28) in the previous
example with initial conditions,

u(ζ, ξ, 0) = − exp(ζ + ξ),

v(ζ, ξ, 0) = exp(ζ + ξ).
(34)

The exact solution at (ℑ = 1, f1 = f2 = 0),

u = − exp(ζ + ξ + 2ρt),

u = exp(ζ + ξ + 2ρt).
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Solution: With the same method used in Section 4, which was applied in the previous example,
we will obtain the approximate solution for both u and v, as in the result below,

u = u0(ζ, ξ, t) + u1(ζ, ξ, t) + u2(ζ, ξ, t) + · · ·

= − exp(ζ + ξ) + 2 exp(ζ + ξ)
ρtℑ

Γ(ℑ+ 1)
− 4 exp(ζ + ξ)

ρ2t2ℑ

Γ(2ℑ+ 1)
− · · ·

= − exp(ζ + ξ)

[
1 +

∞∑
n=1

(−2ρ)ntnℑ

Γ(nℑ+ 1)

]
.

(35)

u = v0(ζ, ξ, t) + v1(ζ, ξ, t) + v2(ζ, ξ, t) + · · ·

= exp(ζ + ξ)− 2 exp(ζ + ξ)
ρtℑ

Γ(ℑ+ 1)
+ 4 exp(ζ + ξ)

ρ2t2ℑ

Γ(2ℑ+ 1)
+ · · ·

= exp(ζ + ξ)

[
1 +

∞∑
n=1

(−2ρ)ntnℑ

Γ(nℑ+ 1)

]
.

(36)

Also the numerical results of u and v at ℑ = 1, are reported and compared between approxi-
mate solution and exact solution in Table 3, we see exactly the same results. In Table 4, for value of
ℑ = 0.8, we show compared the numerical results between iterative method [8] and the approxi-
mate solution.

Table 3: The numerical result for exact and approximate solution to the Example 5.2
(ζ = 0.1, ξ = 0.01, ρ = 1,ℑ = 1).

t
Exact solution Approximate solution
u v u v

0 −1.116 1.116 −1.116 1.116

0.1 −1.363 1.1363 −1.363 1.1363

0.2 −1.665 1.665 −1.665 1.665

0.3 −2.034 2.034 −2.034 2.034

0.4 −2.484 2.484 −2.484 2.484

0.5 −3.034 3.034 −3.034 3.034

0.6 −3.706 3.706 −3.706 3.706

0.7 −4.527 4.527 −4.527 4.527

0.8 −5.529 5.529 −5.529 5.529

0.9 −6.753 6.753 −6.753 6.753
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Table 4: The numerical result for iterative method and approximate solution to the Example 5.2
(ζ = 0.1, ξ = 0.01, ρ = 1,ℑ = 0.8).

t
Iterative method [8] Approximate solution

u v u v

0 −1.116 1.116 −1.116 1.116

0.1 −0.804 0.804 −0.804 0.804

0.2 −0.641 0.641 −0.641 0.641

0.3 −0.529 0.529 −0.529 0.529

0.4 −0.446 0.446 −0.446 0.446

0.5 −0.383 0.383 −0.383 0.383

0.6 −0.333 0.333 −0.333 0.333

0.7 −0.294 0.294 −0.294 0.294

0.8 −0.261 0.261 −0.261 0.261

0.9 −0.234 0.234 −0.234 0.234

6 Conclusions

The main concern of the current paper is to examine the transformation of S-transform and
hybridize this transformation with the homogeneous perturbation method to solve FCNSE. This
method played an important role in solving FCNSE. To illustrate this, some examples were com-
bined to show the validity and applicability of this new technique and compare it with published
works. Comparative tables were obtained about the efficiency of this work idea with other pa-
pers. The main technique considered in this paper can be used for fractional derivatives with
order greater than 1, but the fractional differential equation requires more initial conditions to
apply the proposed method, and we will try to expand and present it in the upcoming works. In
addition, there are three directions for future work:

• Studying exact solution for system of FNSE.
• Applying other techniques for solving fractional differential equations as optimal control.
• Using the same technique by some transformation to solve another models of fractional par-

tial differential equation.
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